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Logistic growth of diffusing reactants on spatial domains with long-range competition is studied. The
bifurcations cascade involved in the transition from the homogeneous state to a spatially modulated stable
solution is presented, and a distinction is made between a modulated phase, dominated by single or few wave
numbers, and the spiky phase, where localized colonies are separated by depleted region. The characteristic
defects in the periodic structure are presented for each phase, together with the invasion dynamics in the case
of local initiation. It is shown that the basic length scale that controls the bifurcation is the width of the Fisher
front, and that the total population grows as this width decreases. A mix of analytic results and extensive
numerical simulations yields a comprehensive examination of the possible phases for logistic growth in the
presence of nonlocal competition.
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I. INTRODUCTION

Recently, there is a growing interest in the spatial proper-
ties of logistic growth with nonlocal interactions. Interest-
ingly, some results have been published independently by
authors from different disciplines, ranging from pure math-
ematics to ecological modeling �1–15�. A variety of models
have been introduced, including various types of interaction
kernels, deterministic and stochastic evolution, and growth
or death rate that depends on the local population. A common
feature found in all these models is the segregation transi-
tion, i.e., for small enough diffusion and for certain interac-
tion kernels the homogeneous state of the system becomes
unstable and the steady state is spatially heterogeneous. This
feature turns out to be stable against the stochasticity induced
by the discrete nature of the reactants, and the total carrying
capacity �per unit volume� of the stochastic system depends
on the details of the spatial segregation �7,15�.

In previous work �6�, the general conditions for the inte-
gral kernel to allow for spatial segregation have been pre-
sented, and the existence of topological defects between or-
dered domains has been analyzed in detail for a logistic
growth on a one dimensional array of patches with nearest
neighbor competition. Here, a comprehensive study of this
reaction-diffusion equation is presented: short-range interac-
tions are shown to yield spatial modulation of arbitrary large
wavelength and different types of defects, the total popula-
tion of the system admits nontrivial dependence upon the
diffusion rate, and the dynamics of the system is studied,
both for global initiation and for local initiation. The appear-
ance of domains with different order parameters and the fea-
tures of the boundaries between them is considered in detail
for various situations.

Our starting point is the well-investigated Fisher–
Kolomogoroff-Petrovsky-Piscounoff �FKPP� equation
�16,17�, first introduced by Fisher to describe the spreading
of a favored gene in population:

�c�x,t�
�t

= D�2c�x,t� + ac�x,t� − bc2�x,t� . �1�

Clearly, this equation is a straightforward generalization of
the logistic growth to spatial domains, and allows for two

steady states: an unstable state with c�x�=0 ∀ x and the
stable steady state c�x�=a /b. It was shown that, for any local
initiation of the system �i.e., c�x��0 on a compact domain�,
the invasion of the stable phase into the unstable region takes
place via a front that moves in a constant velocity vF

=2�Da. The stability of this solution, the fact that the veloc-
ity is determined by the leading edge �“pulled front”� and the
corrections to this expression due to stochastic noise associ-
ated with the discrete nature of the reactants �18�, has been
reviewed, recently, by various authors �19�.

The FKPP equation is the simplest equation that describes
the transition from unstable to stable steady state on spatial
domains, and as such it fits many situations, from the spread
of a disease by infection to the advance of a fire or new
technology. Accordingly, this model has been widely studied
from many points of view and has been generalized in many
directions such as modified interaction terms, nonlinear dif-
fusion, and so on.

The process considered here, logistic growth with nonlo-
cal competition, is described by the generalized FKPP equa-
tion:

�c�x,t�
�t

= D�2c�x,t� + ac�x,t� − c�x,t��
−�

�

��x,y�c�y,t�dy ,

�2�

where ��x ,y� is the interaction kernel, and the original FKPP
process corresponds to the limit ��x ,y�=��x−y�.

The motivation for the study of this process comes from
one of the basic mechanisms in population growth, namely,
the competition for common resource. In any autocatalytic
system the multiplication of agents depends on various re-
sources �energy, chemicals, water, etc.�. If there is only a
limited amount of the resource, its consumption leads to ex-
tinction, so generally any crucial resource should be depos-
ited, and its availability dictates the saturation value for the
population. As a concrete example let us look at vegetation
�20–22�: the common resource needed for vegetation is wa-
ter, and the rain corresponds to deposition of this resource. If
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the resource dynamics is much faster than that of the agents
�shrubs, trees, etc.�, there is, at any time, a soil moisture
profile that reflects the instantaneous vegetation configura-
tion, and there is a depletion of this moisture at the spatial
region around a biomass unit. Accordingly, the environmen-
tal conditions for a new agent at this region becomes hostile.
Following arguments of this type one suggests that competi-
tion for common resource induces long-range competition
among agents via the depletion of the resource in the sur-
roundings of an agent. Other examples may involve the com-
petition for light �23�, foraging of the predator that induces
an effective coupling between prey habitats �24�, and coop-
eration among agents �symbiosis� that may yield “negative
competition” among the reactants.

Two length scales play a role in our modeling: the first is
a short length associated with the discreteness of the reac-
tants and the second is the competition length. As any natural
phenomenon involves discrete objects, there is a basic length
associated, for example, with the size of the creature, the
diameter of a single perennial shrub, or the typical distance
between habitats. The competition is “long range” only if the
competition length is larger than this short length cutoff. Ac-
cordingly, the model presented here is a lattice model, where
a single patch is associated with the basic natural unit and the
lattice constant is the corresponding short scale �see, e.g.,
Ref. �24��. The competition range is then measured in these
units. As explained in the next section, another length scale,
the width of the Fisher front, appears due to the dynamics of
the invasion and dictates the transition to the continuum
limit.

The numerical procedure for simulations of the dynamics
corresponding to Eq. �2� require space and time discretiza-
tion. In this work the time evolution of the system is gener-
ated via forward Euler integration, where the time step is
taken small enough such that further reduction of it does not
affect the results. The system is simulated on discrete patches
with periodic boundary conditions, where the hopping rate is
proportional to the diffusion constant.

Let us present some a priori considerations related to this
system. There are few basic types of steady state solutions:
first, it may happen that the steady state is homogeneous: this
may be the case if the long-range competition is too weak, or
if the interaction kernel does not allow for the instability to
occur �4,6�. At some point in the parameter region the homo-
geneous solution becomes unstable against perturbation with
one specific wavelength, the spatial symmetry breaks and
modulation at this wavelength appears. At this point, i.e.,
along the line in parameter space that defines the stability
limit of the homogeneous state, only a single wavelength
admits negative Lyapunov exponent and dictates the inhomo-
geneous �modulated� steady state. Far from this line �see the
phase diagram plotted in Fig. 1 below� the homogeneous
state is unstable against many wavelengths, perturbations of
different modulations grow in time, and some sort of mode
competition takes place. Still, if the parameters are close to
the stability limit there will be one wavelength that domi-
nates the system and suppresses all other ‘‘active’’ modes.
Far from this line there is strong competition and the steady
state is no longer dominated by a single wavelength. Instead,
if the competition is strong enough in some range one may
expect that ‘‘life’’ at a single patch forces all the other
patches at this finite range to be �almost� empty, and the
steady state corresponds to a lattice of almost isolated colo-
nies �‘‘spikes’’� where many active wavelengths participate
in the formation of localized bumps.

As we are looking at a dynamical system with no noise,
few stable steady states may exist simultaneously, each ad-
mits its own basin of attraction in the space of possible initial
conditions. Numerically, however, it turns out that only one
important distinction should be made, namely, between local
and global initiation: the initiation is “local” if at t=0 there is
finite support to the colony, while if the system begins with
random small biomass that spreads all around it corresponds
to global initiation. Within each of these subclasses, the nu-
merics suggests that a generic initial condition flows into a
specific steady state.

FIG. 1. Phase diagram for next
nearest neighbor competition at
D=0 �solid line� and D=0.02
�dashed line�. Region I is the ho-
mogeneous, while II marks the
up-down stable solution region
similar to the nearest neighbor
case. In region III the wave vector
k3 �defined in the text� is stable
and various wave numbers may be
active. As diffusion increases the
homogeneous region “blows up”
since the instability appears only
for stronger competition, as im-
plied by Eq. �15�.
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This paper is organized as follows: in the second section
the stable spatial configurations �steady states stable against
small fluctuations� are presented: the conditions for an insta-
bility of the homogeneous solution are reviewed and dis-
cussed, and the properties of the final state are identified in
different parameter regions, leading to a characteristic “phase
diagram.” In the next section the appearance of defects
�separating spatial regions with different order parameter
phase� is studied. The fourth section deals with the “spiky”
phase, where many excited modes superimposed to yield a
pattern of spikes and the typical defect is a combination of
two depletion regions. In the fifth section there is a brief
description of phases and defects in two spatial dimensions,
and in the next section the effect of the spatial segregation on
the global population is considered. In the seventh section
the dynamic properties of the model are discussed, including
the velocity of the primary and the secondary Fisher fronts
and the appearance of topological defect in the invaded re-
gion. Some comments and conclusions are presented at the
end.

II. STATIC PROPERTIES

In this section we consider the steady state solutions for
Eq. �2� on spatial domain of coupled, identical patches. The
initiation is assumed to be global, i.e., the initial conditions
are small, randomly spread, a reactant population at each
spatial patch. The model considered here allows for non-
trivial spatial organization even in the absence of diffusion,
due to the long-range competition, and global initiation helps
us to see these features within reasonable simulation times.
The differences, if any, between global and local initiation
will be considered in the last section.

A. Bifurcation cascade

Let us consider the spatially discretized version of Eq. �2�,
i.e., an infinite one dimensional array of identical patches
coupled to each other by diffusion and long-range competi-
tion. The time evolution of the reactant density at the nth
site, c̃n, is given by

� c̃n�t�
�t

=
D̃

l0
2 �− 2c̃n�t� + c̃n+1�t� + c̃n−1�t�� + ac̃n�t� − bc̃n

2�t�

− c̃n�t��
r=1

�

�̃r�c̃n+r�t� + c̃n−r�t�� , �3�

where D̃ is the diffusion constant and a, b, �̃ are the corre-
sponding reaction coefficients �for the sake of clarity an ex-
plicit distinction is made between the “usual” on-site logistic
saturation coefficient b and the nonlocal competition �̃�. One
may define the dimensionless quantities

� = at, c = bc̃/a, �r = �̃r/b, D =
D̃

al0
2 . �4�

Note that the new “diffusion constant” is D=W2 / l0
2, where

W��D /a is the width of the Fisher front, so the dimension-

less diffusion is determined by the ratio between the front
width and the lattice constant. The continuum limit, though,
is the limit where the front width is large in units of lattice
spacing. With these definitions Eq. �3� takes its dimension-
less form,

�cn

��
= D�− 2cn + cn+1 + cn−1�

+ cn	1 − cn − �
r=1

�

�r�cn+r + cn−r�
 , �5�

that may be expressed in Fourier space �with Ak��ncneiknl0�
as

Ȧk = �kAk − �
q

�k−qAqAk−q, �6�

where

�k � 1 − 2D�1 − cos�kl0�� , �7�

�k � 1 + 2�
r=1

�

�r cos�rkl0� . �8�

Following Ref. �26�, one observes that cn is positive
semidefinite so A0 is always “macroscopic.” Any mode is
suppressed by A0; accordingly, for small �r one expects only
the zero mode to survive. If, on the other hand, �r increases
above some threshold, bifurcation may occur with the activ-
ization of some other k mode�s�, and the homogenous solu-
tion becomes unstable.

Instability occurs if a k mode exists such that small per-
turbation with wavelength 2� /k grows in time. Linear sta-
bility analysis of a single k mode in the presence of A0 leads
to the equation

Ȧk = 1 − 2D�1 − cos�kl0��Ak − �kA0Ak − �0AkA0. �9�

Ak is positive, so bifurcation occurs when

1 − 2D�1 − cos�kl0�� − �kA0 − �0A0 � 0, �10�

where the homogeneous solution is A0=1/�0. A modulation
k grows if

g�k� � �k + 2�0D�1 − cos�kl0�� 	 0 �11�

is fulfilled for that k. This is the situation where patterns
appear and translational symmetry breaks. Right above the
bifurcation there is only one “active” k mode that dictates the
modulation of the system. As g�k� decreases further there are
many active modes that compete with each other via the
nonlinear terms of Eq. �6�, and the linear stability analysis of
the homogeneous state may be irrelevant to the final spatial
configuration.

B. Nearest neighbor interactions

In previous work �6�, the properties of the system have
been considered for the extreme case where the competition
takes place only between neighboring sites ��r=� for r=1
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and �r=0 if r�1�. For nearest neighbor �NN� interaction of
that type the only stable wave number is k=� / l0, where l0 is
the lattice constant, and the bifurcation takes place at �
=1/2. The spatial state at this wave number is un=A0
+A� cos�n� / l0� and the spatial structure is of the form
¯ududud¯ �u=up, large amount of biomass, d=down,
small amount�. In the absence of diffusion spatial segrega-
tion takes the form 101010, i.e., only the even �odd� sites are
populated. Obviously, starting from generic random state dif-
ferent domains are created with odd or even “order param-
eter” and kinks �domain walls� emerge between different do-
mains. As shown in Ref. �6�, the structure of these
topological defects, including their size �that diverges at the
segregation transition� and their exact form, may be calcu-
lated analytically.

C. Next nearest neighbors (NNN)

Quite surprisingly, the increase of the competition radius
by a single site takes us to a completely different regime.
While in the case of nearest neighbor interaction the spatial
modulation length and the competition length are the same,
next nearest neighbor competition �and, accordingly, any in-
teraction of longer range� may yield, upon tuning the param-
eters, spatial modulation of arbitrary large wavelength. This
situation resembles the case of magnetic systems, e.g., an
Ising chain: if the exchange interaction is only between near-
est neighbors the equilibrium state admits only an up-down
modulation, while NNN interaction may yield large solitons,
as shown by Ref. �25�. In that sense the next NN case dem-
onstrates the essential features of the long-range competition

model in a generic way, while at least part of the results may
be inferred analytically.

The most general form of next nearest neighbor interac-
tions is given by Eq. �5� with

�r = ��1, r = 1

�2, r = 2

0, else.
� �12�

The bifurcation threshold is defined now by the equation
�using Eq. �11� and the explicit expression for �k�:

g�k� = 1 + 2�1 cos�kl0� + 2�2 cos�2kl0� + 2�0D�1 − cos�kl0��

= 0, �13�

where g has extremum points at k1,2=0,� and

k3 = arcos	− �1 + �0D

4�2

 . �14�

If a real wave vector k3 exists �i.e., at �−�1+�0D� /4�2	1�
it is the minimum of g�k� while k1,2 are maxima. For the
range of parameters where k3 is imaginary the minima may
be at k=� and the modulation is of “up-down” type, or at
k=0, where the homogeneous state is stable. The resulting
phase diagram, in the �1-�2 plane with zero diffusion, is
presented by the solid line in Fig. 1: In region I the homo-
geneous state is stable, while in region II the bifurcation
takes the system to the up-down mode, like the situation for
NN interaction. In region III, however, k3 dominates and
modulations of any size may occur. The bifurcation line is
given �in the presence of diffusion� by the two branches of
the equation:

�2 =
1 + 2D − D2 + �1�5D − 2D2� ± �1 + 4D + 14D�1 − 2�1

2 + 12D�1
2

2D2 + 4 − 16D
�15�

that reduces, at the D=0 case, to the simple form

�2 =
1 ± �1 − 2�1

2

4
. �16�

1. Wavelength selection, mode competition, and the spiky
phase

From Eq. �13� it seems that the bifurcation wavelength is
bounded from above by the interaction length �no minima at
nontrivial k exists above the interaction length, as all terms
of the derivative are of the same sign�. This, however, is not
the actual situation on a discrete lattice: the wavelength in-
ferred from Eq. �14�, although bounded, is generically in-
commensurate with the lattice constant, and the system
should choose a commensurate one. It turns out that, if the
wavelength is rational �i.e., if k3=2�m /n, where m and n
admits no common denominator� the spatial modulation re-

peats itself after n lattice sites. A typical example is the
steady state obtained numerically for the case m=7, n=20
where a period-20 modulation appears, as demonstrated in
Fig. 2. At finite system the maximal n allowed is of order of
the system size, and only in an infinite system all rational
fractions may be activated. Note that in an infinite system
any change of the interaction parameters yields different
wavelengths, a phenomenon that resembles the “devil stair-
case” situation in spin systems �25�.

For a finite system thus there is a set of points along the
bifurcation line that corresponds to the allowed wavelengths.
Numerical simulation indicates that there is a basin of attrac-
tion around each of these points, i.e., if the interaction pa-
rameters �1 and �2 yield a prohibited wavelength the system
flows into one of the closest allowed modulations. The over-
all structure is demonstrated in Fig. 3: close to an isolated
point there is a basin of attraction, but further away from the
bifurcation line these regions begin to overlap, and the sys-
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tem flows into some mixture of the closest allowed states,
depending on its initial conditions. Deep in region III many
wave numbers are involved; the interaction parameters are
relatively large, and instead of simple harmonic modulation
the system flows, generically, into a spiky steady where the
“living colonies” are separated by the interaction length and
are not effected by the competition between patches.

Although the numerical examples presented here are for a
system with next nearest neighbor competition and without
diffusion, it is easy to extract from it the properties of the
steady state in general. The effect of diffusion is to increase
the size of the stable region so the bifurcation line of Fig. 1
moves outward together with the pure and the spiky states as
illustrated by the dashed line. For interactions of longer
range the parameter space is of higher dimensionality; still,
close to the origin �i.e., for weak competition� the homoge-
neous solution is stable, while far away �strong competition�
one expects spatial segregation and the appearance of spikes,
as discussed below.

III. DEFECTS

The transition from the homogeneous to the modulated
state involves spontaneous breakdown of translational sym-
metry, and upon global initiation one may expect domain
walls, or kinks, that separate spatial regions with different
order parameter. The presence of these defects and their
character is crucial for the understanding of the system re-
sponse functions, e.g., its behavior under small noise: as
there is no preference to one phase of the order parameter the
kinks may move freely, while the “bulk” of the domain is
much more stiff. In the following paragraphs the character-
istic defects for various phases are presented.

A. Domain walls

As mentioned above, the nearest neighbor competition
leads, above the bifurcation threshold, to appearance of an
up-down modulation �k=��, and if there is no diffusion the
steady state is the 0101010 configuration. Clearly there are
two equivalent segregations of this type, namely, filled odd
sites and empty even sites or vice versa. Accordingly, in the
case of global initiation �random “seeds” are spread all
around� one finds domains of the stable patterns with differ-
ent parity, and domain walls �technically known as kinks or
solitons� that separate these regions, as seen in Fig. 4. The
nearest neighbor interaction is simple enough to allow for an
analytic solution for the kink, and the numerical results con-
firm the predictions �6�.

In the presence of diffusion there is a “smearing” of the
above results: the homogeneous state is stable for larger �,
and above the segregation threshold the steady state is
smeared from ¯01010¯ to an “up-down-up-down” form,
and the kinks are not of finite size but admit exponentially
decaying tails; see Ref. �6� for details.

B. Phase shift

Unlike the nearest neighbor case, competition of longer
range leads to instabilities with wavelengths of more than
one site, i.e., cn=A0+Ak cos�nkl0� with general k. This opens
the problem of defects between ordered regions. Inspired by
the nearest neighbors example one may expect another types
of kinks that separate different regions of ordered state. Sur-
prisingly, this is not the case. Instead of getting kinks be-
tween different oriented regions of the activated wave num-
ber, one gets a single oriented region with phase shift,

FIG. 2. Spatial structure of wave vector k=14� /20l0, where n is
the site index and Cn is the concentration at each site. According to
Eq. �14� one expects the modulation length to be 
=20l0 /7, but
discreteness of the lattice allows only for commensurate periodicity
of 20 sites.

FIG. 3. Basins of attraction for allowed states close to the bifur-
cation line �sketched�. The straight line is an enlarged portion of the
bifurcation line �I-III interface� of Fig. 1. The bold points on this
line correspond to an allowed state, i.e., states with wavelengths
commensurate with the lattice size. Each possible wave vector ad-
mits a basin of attraction, like those denoted by A and B in the
figure. Starting from �1,�2 values inside region A, for example, the
system flows to the modulation correspond to the bold point inside
the triangle. Away from the bifurcation line �region C� few basins of
attraction overlap and mode competition takes place. Even further
away, deep in region III, the system is in the spiky phase: many
active modes exist and their superposition yields the “wave packet”
characteristics of the spikes.
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namely, the spatial structure is of the form cn=A0
+B cos�nkl0+��, where � is the phase shift between the ac-
tual solution and the predicted modulation cn=A0
+Ak cos�nkl0� and B=Ak / cos �.

On the unit cycle �Fig. 5� the meaning of this additional
phase is a shift of all points by �. This shift may reduce the
number of distinct values in one cycle by 1, as indicated in

the example of Fig. 5: here, instead of six distinct values
taken by cn along one wavelength, there are only five. Both
numerical simulations of the system dynamics, starting from
random initial conditions, and stability analysis of the pos-
sible steady state for arbitrary � indicates that, although any
� corresponds to a locally stable solution, the most stable �
equals half of the angular distance between two adjusting
points on the circle. In Fig. 5 the actual phase shifted pattern
is shown for k=3� /5l0, while Fig. 6 indicates that the most
stable phase corresponds to � /�0=1. As the Lyapunov ex-
ponent of any � is negative, small perturbations around any
� value �in particular, �=0� decay. Figure 7 shows the cor-
responding stable mode with �=0 where the initial condi-
tions are small perturbations around it. Figure 8, on the other
hand, shows the final state with generic initial conditions,
where the system flows to the most stable pattern with
� /�0=1.

IV. SPIKY PHASE

Deep in region III of the phase diagram �Fig. 1� many
wave vectors are excited, with strong mode competition be-
tween them, and the linear analysis picture based on Fourier
decomposition becomes ineffective. Better insight into the
system comes from a real space analysis: deep into region III
the long-range competition is strong, and within the effective
interaction range a new colony cannot develop in the pres-
ence of a fully grown one. Accordingly, this phase is charac-
terized by fully developed colonies separated by “dead re-
gions” of constant length that reflect the effective interaction
length. In Fourier space, this corresponds to many active
modes that build together a periodic structure of “bumps.”

In the case of global initiation, of course, defects may
appear in the stable steady state as the system flows to dif-
ferent order parameters in different regions. Again, it is bet-
ter to use the real space picture in order to describe these
defects. The situation is close to what is observed in the case
of random sequential adsorption �21,27�: while an “optimal”
filling of the system admits a periodic structure of living
patches with periodicity of, say, L lattice points, it may hap-
pen that the distance between two fully developed sites is
between L and 2L, and all the site in between should remain
empty due to the long-range competition. The emerging spa-
tial configuration is of ordered regions �with coherence size
that depends upon the dynamics� separated by “domain
walls,” where the width of these walls is taken from some
distribution function between zero and the interaction effec-
tive length.

V. TWO DIMENSIONAL SYSTEM

Although all the analysis presented was in one dimension,
the basic picture is the same for higher dimensionality. In
particular, the bifurcation condition is similar, nearest neigh-
bor interactions yield a “checkerboard” phase above the bi-
furcation line, and the spiky phase is also observed.

For nearest neighbor interaction kinks between different
regions �checkerboard parity� occurs. Because of the two di-
mensionality of the lattice the kinks might have any arbitrary

FIG. 4. A typical kink of length L=20, an outcome of forward
Euler integration of Eq. �5� �with NN competition� on 1024 lattice
points with periodic boundary conditions and random initial condi-
tions at �=0.505 �just above the bifurcation�.

FIG. 5. �Color online� The set of different values of population
size at different sites is presented on the unit circle where the linear
analysis predicts an instability with wave number k=3� /5l0. The
filled circles are the values of cos�3n� /5l0�, the solution predicted
by the naive argument, and this is indeed a stable solution with a
finite basin of attraction �see Fig. 7�. It turns out, however, that
generic initial conditions flow into a phase shifted solution where
the population is of the form cos�3n� /5l0+�� �shown in Fig. 8�.
The value of � is half of the angular distance between two close
sites, here corresponds to the open triangles on the unit cycle.
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spatial line, rather than straight line, as shown in Fig. 9.
Those kinks are de facto one dimensional �1D� topological
defects, because of the periodic boundary conditions. On the
other hand, the domain walls of Fig. 10 seems to admit a real
2D features, although their topological character is not clear.

VI. GLOBAL PROPERTIES

A. Upper critical diffusion

Let us turn back to the bifurcation condition, Eq. �11�, in
different representation:

�k

�0
+ 2D�1 − cos�kl0�� 	 0, �17�

where the k considered is the one for which �k admits a
global minimum. Clearly, this kmin depends only on the form
of the interaction kernel and is independent of its strength �if
one multiplies all �r by a constant factor, the value of kmin
remains the same�. Since the negative term in the instability
condition �k /�0 cannot exceed �−1�, the absolute value of
the right hand term should be even smaller to allow a peri-
odic modulation of the stable steady state.

FIG. 6. The Lyapunov expo-
nent ��� �in arbitrary units� the
phase shift for various wave num-
bers, i.e., for solutions of the form
cos�nk+��. While the steady state
is stable for any �, the most stable
state corresponds to �0, half of the
angular distance between two con-
secutive lattice points.

FIG. 7. The steady state �for the parameters of Fig. 5� where n is
the site index and cn is the concentration at each site. The initial
conditions are close to the �=0 solution, i.e., cn�t=0�=A0

+Ak cos�3�n /5�+�n, where �n is a small random number. The sys-
tem flows to the �=0 steady state, in agreement with the local
stability analysis presented in Fig. 6.

FIG. 8. Same as Fig. 7, but now the initial conditions are ge-
neric, cn�t=0�=�n. The system flows to the most stable steady state
that corresponds, in this case, to cn=A0+B cos�3n� /5+��, with
�=3� /10.
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Assume, now, that the wavelength of the modulation is
much larger than the lattice constant �as already required as
one approaches the the continuum limit�. In that case the
approximation 2D�1−cos�kl0���Dkmin

2 l0
2 holds, and since

D= �WF / l0�2, this term is proportional to �WF /
�2, where 
 is
the period of the modulation. This implies that, independent
of the strength of the long-range competition, bifurcation
never takes place if the width of the Fisher front is larger
than the period of the modulation. This statement holds up to
a numerical factor �between 0 and 1� which is determined by
the form of the competition kernel.

A simple example that demonstrates these considerations
is the case of nearest neighbor interaction. Here

g�k� = 1 + 2� cos�k� + 2�1 + 2��D�1 − cos�kl0�� �18�

and the global minima is k=�. g�kmin� is

g��� = 1 − 2� + 4�1 + 2��D �19�

so for any � there is an upper critical D,

Dc =
2� − 1

4�1 + 2��
, �20�

above which no bifurcation takes place. This upper critical
diffusion constant converges to a global value as �→�,

Dc
g � Dc,�−�� =

1

4
, �21�

and no bifurcation takes place when the width of the Fisher
front is of the order of the modulation length. Intuitively this
result may be understood as follows: suppose that the system
is in its 010101 state, and suppose that the dynamics is dis-
crete in time. If D=1/4 it implies that each filled site con-
tributes 1 /4 to any of its neighbors, and then the system is
frozen in its homogeneous state with amplitude 1/2 at each
site. Generalizing this intuition to periodic modulation of ar-
bitrary wavelength yields the same result, where the Fisher
front width stands as a definition of an “effective site.”

B. Spatial segregation and total population

Given a system with long range competition, one may ask
how the total population �integrated over all the spatial do-
main� or the average population density depend on the phase
of the system. As pointed out by Refs. �7,15�, for a system of
discrete agents with nonlocal interactions, the size of the
total population depends on the efficiency of segregation:
strong segregation implies higher population �on average,
since there are empty regions and living patches�. Thus the
decrease of diffusion implies a higher total population den-
sity. In this subsection this phenomenon is analyzed at the
rate equation limit on a lattice with different interaction
range and dimensionality.

FIG. 9. �Color online� Spatial domains in a two dimensional system, for logistic growth with nearest neighbor competition. The
parameters are chosen to be above the bifurcation threshold, and the stable steady state is a checkerboard with alternating filled and empty
sites. Denoting a site by its coordinates i, j, there are two possible phases of the solution, corresponding to filled i+ j odd, empty i+ j even,
and vice versa. Here, the results of a Euler integration of the process for a 2D sample of 5050 sites with periodic boundary conditions is
presented, where only the kinks separating regions of different order parameters are colored. The kinks here are noncontractible on the torus
and correspond to one dimensional topological defects. The simulation parameters are D=0, �1=0.2505. Initial conditions are seed popu-
lations at each site taken randomly from a square distribution between �0,0.01�.
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Clearly, the total population is given by the amplitude of
the zero mode in Fourier decomposition of the population
�see Eq. �6��. As long as the system is in its homogeneous
phase this quantity is diffusion independent and the total
population depends only on the strength of the interaction,
A0=1/�0. Right above the bifurcation, when only one ex-
cited mode �k� exists, the total population is proportional to
A0=�k / ��0+�k�, and since �k increases as D decreases, so
does the total population. In the case of one dimensional
lattice with nearest neighbor interaction, for example, the
dependence of the total occupancy of the sample on the dif-
fusion constant may be calculated explicitly, since there is
only one excited mode k=� / l0. Here even far from the bi-
furcation point the amplitude of the zero mode is given by
A0=�k / ��0+�k�. The total sum vs diffusion is, accordingly,

A0 = ��1 − 4D�/2, D 	 Dc

1/�1 + 2�� , D � Dc.
� �22�

Figure 11 shows the total sum vs diffusion for few situa-
tions. The numerical results indicate that the decay of aver-
age population is approximately linear. Note that, for the
“top hat” competition presented here, there seems to be a
discontinuity at Dc in two dimensions, while in one dimen-
sion the total population is continuous at the transition.

VII. LOCAL INITIATION: DYNAMICS OF INVASION
AND SEGREGATION

In this paper, an analysis of the stable steady states of the
logistic growth with long range competition was presented.
As few stable steady solutions may exist simultaneously for
the same set of parameters, the generic situation was identi-
fied numerically using global initiation, i.e., a small random
population at each site. In this section, the dynamics of
growth is analyzed, where the initial conditions are a colony
with compact support. For local logistic growth this problem
was considered years ago by Fisher �16� and Kolomogorov
�17�. The invasion of the stable solution into the unstable one
takes place via a front �the Fisher front� that propagates in
constant velocity. This problem was considered by many au-
thors in different contexts and was generalized to other cases
of invasion into an unstable state; see the comprehensive
review by van Saarloos �19�.

The effects of nonlocal competition on the propagation
and shape of the Fisher front was considered by Gourley �29�
for the case of the stable homogeneous solution. While the
nonlocal competition has no effect on the front velocity
�since the velocity of a pulled wave depends only on the
linear parts of Eq. �2��, it has an effect on the shape of this
front. Close to the front edge the effective competition is
smaller �as there is no competition from the almost empty
sites at the leading edge�. As a result, the leading edge is

FIG. 10. �Color online� The same system and parameters as in Fig. 9, for another choice of random initial conditions. Here the domain
wall is contractible on the torus and the order parameter phases are different between the inside and the outside of the kink.
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followed by a “hump” of higher biomass, as can be seen
here, especially in Fig. 12.

As emphasized above, the system considered here may
admit �in regions II and III of Fig. 1� two instabilities: the
empty state is unstable against the homogeneous one, while
the homogeneous solution breaks and yields a spatial modu-
lation. Accordingly, if the system is initiated locally from a
small colony of compact support one expects that two fronts
propagate into the empty region: first the front associated
with the homogeneous state, and then the modulation �sec-
ondary instability� front �30�. These two fronts travel in dif-
ferent velocities. Generally, it is known that the Fisher veloc-

ity is determined by the leading edge �“pulled” fronts� and is
related to the Lyapunov exponent that characterizes the rel-
evant instability. Accordingly, the dynamics of our system is
determined by two velocities: vp, the velocity of the primary
front �that interpolates between the empty and the homoge-
neous state� and the modulation velocity vs. While vp is �
independent, the secondary front velocity vs depends on the
characteristics of the long range competition. By tuning of �,
though, one may change the relative velocity between the
primary and the secondary front. Both velocities may be cal-
culated analytically using a saddle point method and taking
into account the discreteness of the lattice points, as dis-
cussed in the Appendix. Generically, there are two possible
scenarios for the takeover of an empty region by spatially
modulated steady state: in the first case vp�vs �see Fig. 12�
and the homogeneous region between the primary and the
secondary front grows linearly in time. This situation is very
sensitive, as small perturbations �induced by the leading
front� lead to spontaneous bifurcation of the homogeneous
region, a process that yields many structural defects �e.g.,
kinks� along the chain.

In the second case the situation is different: if vp	vs
there is no homogeneous region, and only one front exists.
Its velocity is determined, of course, by the primary front
velocity, but its shape is different �see Fig. 13�. In that case
the sensitive homogeneous region never exists, and the pat-
tern formation process is robust, with no defects associated
with the front kinetics.

VIII. CONCLUSIONS AND REMARKS

This paper attempts to present the various phases associ-
ated with the steady states of the logistic process on spatial
domains with nonlocal competition. The main feature is, of
course, the segregation transition that happens, as was
shown, where the width of the Fisher front �associated with
the homogeneous solution� becomes shorter than the insta-
bility wavelength. Right above the bifurcation one finds a

FIG. 11. �Color online� Total population �T� vs diffusion coef-
ficient �D� for several situations. �A� 1D with nearest neighbor in-
teraction �squares�. �C� 1D, NNN interaction �circles�. �B� 2D, top
hat interaction �triangles�. The top hat is constant interaction with
all sites inside a circle of radius 3l0, and zero outside. In order to
present all the results in the same panel, the population has been
normalized, for each system, by its homogeneous solution �T0�.

FIG. 12. Snapshot of the one dimensional system, initiated lo-
cally from the left, where the primary velocity is higher than the
secondary velocity. The two fronts are clearly shown, and the ho-
mogeneous region between them is widening as time elapsed. The
simulation assumes nearest neighbor competition with D=0.04 and
�=0.8. Along time, defects �one shown left to the front� are gener-
ated at the tip of the secondary front due to the noise induced by the
primary front.

FIG. 13. The same as Fig. 12, but now the velocity of the sec-
ondary front is higher than the velocity of the primary front. Since
the secondary instability may appear only after the primary, the
velocity of the whole front is determined by vp. The parameters
used are D=0.005, �=0.65.
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pattern dominated by a single wavelength, while far away
from the bifurcation line the stable steady state becomes
spiky. Each phase is associated with its own defects: phase
shift close to the bifurcation, empty regions in the spiky
phase, and domain walls �kinks� for the up-down phase of
the nearest neighbor interaction. It turns out that the segre-
gation transition increases the overall carrying capacity per
unit volume. In one dimension the population continues at
the transition while in two dimensions discontinuity might
occur.

Upon local initiation the system dynamics is governed by
the relations between the velocities of the primary �empty to
homogeneous� and the secondary �homogeneous to modu-
lated� fronts. The numerics suggests that, while global initia-
tion may yield “disordered” structure with many defects per
unit length, local initiation with the same parameters yields
ordered structure unless the secondary front velocity is
smaller that the primary one.

While in this work only rate equations of reaction-
diffusion type have been considered, in recent numerical
works of Birch and Young �15� and Garcia et al. �7� the
stochastic motion of the individual reactants is taken into
account. These stochastic models add two ingredients to the
description presented here. First, the introduction of indi-
vidual reactants �“Brownian bugs” �31�� implies a threshold
on the reactant concentration on a single patch. Second, there
is a multiplicative noise associated with the stochastic mo-
tion of individual reactants. As shown in this work, many of
the features associated with long-range competition are inde-
pendent of the discrete nature of individual reactants�28�.

ACKNOWLEDGMENTS

The authors thank Professor. David Kessler for many
helpful discussions. This work was supported by the Israeli
Science Foundation, Grant No. 281/03, and by Yeshaya
Horowitz Fellowship.

APPENDIX

In this Appendix the analytic expression for the secondary
front velocity on a discrete lattice is obtained, via the saddle
point argument �see Ref. �32��. For the sake of simplicity,
only the case of nearest neighbor interaction is considered. In
order to perform the same calculations for competition be-
yond the NN limit, one should first find numerically the
steady state modulation and then follow the same procedure.

The evolution of a population is given by

�cn

�t
= D�− 2cn + cn+1 + cn−1� + cn − cn

2 + cn��cn+1 + cn−1� .

�A1�

Denoting by �n the deviations from the homogeneous solu-
tion, cn=A0+�n, Eq. �A1� is linearized to yield

��n

�t
= ��n + ���n+1 + �n−1� , �A2�

where �=a−2bA0+2A0�−2D and �=D−A0�. Assuming a
modulated solution of the form

�n = �Aeikl0n+��k�t, n odd

Beikl0n+��k�t, n even
� �A3�

and plugging Eq. �A3� into Eq. �A2� one gets

��k��A

B
� = � � � cos�klo�

� cos�klo� �
��A

B
� . �A4�

The dispersion relations are given by

��k� = � + � cos�kl0� , �A5�

where the plus sign is chosen for the unstable modes. The
solutions are of the form

� cn

cn+1
� = �A

B
�eikx+��k�t. �A6�

If a solution represents a traveling front with velocity v it
is useful to define the coordinate system in the moving
frame, �=x−vt, to get

� cn

cn+1
� = �A

B
�eik�+ikvt+��k�t. �A7�

Using the saddle point method �19� the two equations that
determine the velocity are

f � ivk + � + 2� cosh�kl0� = 0 �A8�

and

� f

�k
= iv + 2�0 sinh�kl0� = 0. �A9�

In the case of finite time steps one should replace ivk by
�e−ikvdt−1� /�t to get the appropriate corrections. Figure 14
shows the perfect fit between the solution of Eqs. �A8� and
�A9� and the numerical solution.

FIG. 14. �Color online� Comparison of the numerical simulation
�triangles� and the theoretical prediction based on the saddle point
method �Eqs. �A8� and �A9�, solid line� for the velocity of the
secondary front as a function of the interaction strength. The diffu-
sion used is D=0.04 and the lattice constant is l0=1, dt=0.01.
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